Id-1, a protein repressed by miR-29b, facilitates the TGFβ1-induced epithelial-mesenchymal transition in human ovarian cancer cells.

نویسندگان

  • Yue Teng
  • Le Zhao
  • Yan Zhang
  • Wei Chen
  • Xu Li
چکیده

BACKGROUND Transforming growth factor beta 1 (TGFβ1) can induce epithelial-mesenchymal transition (EMT) in various human cancers, but the complex mechanisms underlying this have not been fully elucidated. Inhibitor of DNA binding 1 (Id-1) has been identified as a novel marker of ovarian cancer progression. This study aims to investigate the role of Id-1 in TGFβ1-induced EMT in human ovarian cancer cells. METHODS Ovarian cancer cells expressing or not expressing Id-1 were incubated with TGFβ1. Changes in the EMT markers E-cadherin, vimentin, N-cadherin, Id-1, and miR-29b were detected using western blotting and qPCR analyses. Wound healing, transwell migration, and invasion assays were performed in cells where Id-1 was either knocked down or overexpressed. The effects of transfecting miR-29b mimics and inhibitors on Id-1 mRNA and protein expression were assessed. The interaction between miR-29b and Id-1 was confirmed using a luciferase reporter assay. RESULTS Id-1 expression was increased and miR-29b expression was repressed in TGFβ1-responsive ovarian cancer cells. Id-1 overexpression increases and Id-1 knockdown decreases cell migration and invasion capacities. Id-1 silencing leads to a partial blocking of TGFβ1-induced EMT. miR-29b negatively regulates Id-1 expression. Direct binding of miR-29b to the 3'UTR region of Id-1 was confirmed using a luciferase reporter assay. CONCLUSION Id-1, a protein repressed by miR-29b, facilitates TGFβ1-induced EMT in human ovarian cancer cells and represents a promising therapeutic target for treating ovarian cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-221 facilitates the TGFbeta1-induced epithelial-mesenchymal transition in human bladder cancer cells by targeting STMN1

BACKGROUND Distant metastasis is the major cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) has a critical role in this process. Accumulating evidence indicates that EMT can be regulated by microRNAs (miRNAs). miR-221, as oncogenes in several human cancers, was significantly up-regulated in bladder cancers. However, the role of miR-221 in the progression of bladder ...

متن کامل

MicroRNA-target pairs in human renal epithelial cells treated with transforming growth factor β1: a novel role of miR-382

We reported previously an approach for identifying microRNA (miRNA)-target pairs by combining miRNA and proteomic analyses. The approach was applied in the present study to examine human renal epithelial cells treated with transforming growth factor β1 (TGFβ1), a model of epithelial-mesenchymal transition important for the development of renal interstitial fibrosis. Treatment of human renal epi...

متن کامل

miRNA-29b suppresses prostate cancer metastasis by regulating epithelial-mesenchymal transition signaling.

Prostate cancer remains the second leading cause of cancer deaths among American men. Early diagnosis increases survival rate in patients; however, treatments for advanced disease are limited to hormone ablation techniques and palliative care. Thus, new methods of treatment are necessary for inhibiting prostate cancer disease progression. Here, we have shown that miRNA-29b (miR-29b) expression ...

متن کامل

MiR-29b/TET1/ZEB2 signaling axis regulates metastatic properties and epithelial-mesenchymal transition in breast cancer cells

MiR-29b has been reported to be both a suppressor and a promoter in breast cancer (BC) cells proliferation and metastasis. Significant efforts have been made to explain the seemingly contradictory effects of miR-29b on BC, but no answer has yet been clearly verified. In this study, we overexpressed and knocked down miR-29b in BC cell lines, modulated expression of its downstream target gene TET...

متن کامل

Role of microRNA-29b in angiotensin II-induced epithelial-mesenchymal transition in renal tubular epithelial cells.

Angiotensin II (Ang II) has been proven to induce epithelial-mesenchymal transition (EMT). The aim of the present study was to determine the role of microRNA-29b (miR-29b) during Ang II-induced EMT. For this purpose, we used spontaneously hypertensive rats (SHRs) and age-matched Wistar-Kyoto (WKY) rats. The levels of Ang II and its receptor in the kidneys of the SHRs are significantly higher th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 33 3  شماره 

صفحات  -

تاریخ انتشار 2014